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Abstract The Helmholtz mode and other symmetric modes of resonance of a moonpool between two
heaving rectangular floating cylinders are investigated. The hydrodynamic behavior around these resonant
modes is examined together with the associated mode shapes in the moonpool region. It is observed that
near each of the resonance frequencies, the damping coefficient can vanish. The Helmholtz mode is charac-
terized by a region of modest variation of added-mass value from negative to positive near the Helmholtz
frequency. The peaks are, however, bounded with the cross-over point in sign corresponding to a bounded
spike in damping. The higher-order resonant modes are characterized by the presence of standing waves in
the moonpool, which leads to large spikes in the hydrodynamic behavior near the resonance frequencies.
The Helmholtz frequency has a distinct value, while the higher-order resonances occur at fairly regular
intervals of the frequency parameter, σ 2(w − b)/g, where w − b is the moonpool gap. The parametric
dependence of the hydrodynamic behavior on frequency and geometry is discussed.
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1 Introduction

This paper aims to study and understand the resonance frequencies and free-surface modal shapes between
two heaving floating bodies. Such a geometry occurs in twin hulls or similar structures with “moonpools”.
It also examines the behavior of the hydrodynamic coefficients in the frequency domain around the
resonance. Of particular interest is the Helmholtz mode which has a non-zero mean elevation in the gap
or moonpool region. It is sometimes referred to as the pumping or piston mode.
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With some exceptions, the hydrodynamic coefficients of a single body, floating or submerged, normally
are fairly monotonic functions of frequency. The presence of a moonpool offers the possibility of internal
resonances, which will alter the behavior of these coefficients dramatically. One of the earliest works on this
behavior was due to Wang and Wahab [1] who studied, numerically and experimentally, pairs of floating
circular cylinders with varying lateral separations. They identified a Helmholtz mode, which they referred
to as the “zeroth” mode, as well as a sequence of higher-order resonant modes. Marthinsen and Vinje
[2] utilized matched asymptotic expansions to study a narrow gap between two rectangular bodies. Miles
[3] and Miles and Lee [4] used an equivalent circuit analysis to predict the Helmholtz response of a har-
bor to exterior excitations. Ünlüata and Mei [5] similarly studied harbor oscillations as a boundary-value
problem.

In search of probable homogeneous solutions of these frequency-domain problems, McIver [6] derived
shapes of a twin body which exhibited a “trapped-mode” frequency, at which no waves are radiated to
infinity. Further studies of related shapes in three dimensions were made by McIver and McIver [7], and
Newman [8], the latter investigating a shape in toroidal form. These trapped modes are characterized by
zero wave radiation together with infinite added-mass coefficients. In frequency-domain computations, the
trapped-mode frequency shows up as an unbounded solution since the multiplier on the homogeneous
solution is non-unique. The existence of shapes of a single body that has vanishingly small damping has also
been known for a long time since the 1960s [9]. Kyozuka and Yoshida [10] in fact derived the streamlines
for axisymmetric bodies that have zero damping, hence zero wave-exciting force. However, the solution,
and hence the added-mass coefficient, is bounded at these radiation-free frequencies.

Among others, the method of matched eigenfunctions has been used by Garrett [11], who studied the
diffraction of a “bottomless harbor”. Yeung [12] further developed the method to examine the hydrody-
namic coefficients of a truncated vertical cylinder. A similar procedure was used by Miloh [13] to investigate
the wave load on a solar pond that contains a two-layer fluid. Similarly, Shipway and Evans [14] investigated
the trapped modes of concentric cylinders with thin walls. More recently, Mavrakos [15] extended this last
study to determine the hydrodynamic coefficients of concentric cylinders with walls of finite thicknesses.
The eigenfunction-matching method is efficient, accurate, and most importantly, free of the occurrence of
irregular frequencies typically encountered in integral-equation formulations.

Modal shapes within the moonpool area were addressed by Molin [16], who modeled the presence
of the body as a laterally unbounded plate on the free surface. Shipway and Evans [14] provided a selection
of wave forms for the trapped modes between concentric cylinders. Not as much is known about how the
modal shapes and the hydrodynamic coefficients behave across the resonance frequencies.

After developing the solution of the problem in the next section, we examine how the hydrodynamic
properties depend on the geometric parameters of the cylinders. We then discuss how the free surface will
vary with the type of resonance mode.

2 Formulation and analysis

The method of analysis follows closely that used in [12]. A pair of infinitely long parallel cylinders of
identical rectangular profiles as shown in Fig. 1 is assumed to oscillate vertically in the free surface of water
of depth h. Each cylinder has a beam of 2b and a draft of d. The gap between the pair is 2(w − b), where
2w is the distance between the centerlines of each of the cylinders.

Since only heave motion is considered here, the solution is symmetric about x = 0 and only the two-
dimensional domain x ≥ 0 is considered. With the usual assumption that the fluid is incompressible and
inviscid, and the flow irrotational, the following linearized boundary-value problem based on a small
amplitude of motion ζ2 is well described in [17].

Let the heave motion of both cylinders be described by ζ2 cos σ t, σ being the angular frequency; then
the velocity potential within the fluid can be written as
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Fig. 1 Schematic of the
fluid domain
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�(x, y, t) = Re[−iσζ2φ(x, y)e−iσ t], (1)

where φ(x, y) is the so-called unit (-amplitude) spatial potential. The governing equation for φ is Laplace’s
equation:

∇2φ = 0, (2)

where φ must satisfy also the no-flux conditions on the solid boundaries:

φx(x = w ± b, y) = 0, for y ≥ −d, φy(x, y = −h) = 0. (3)

Symmetry of the solution implies

φx(0, y) = 0, (4)

and the kinematic boundary condition at bottom of the cylinder gives,

φy(x, y = −d) = 1 for w − b ≤ x ≤ w + b. (5)

The linearized free-surface boundary condition is applied at y = 0,

φy − νφ = 0, (6)

where ν = σ 2/g. Finally, the potential also has to satisfy an “outgoing-wave” condition far from the
cylinders.

2.1 Division of fluid domain

The domain of the analysis is split into three distinct rectangular sub-domains with different types of spatial
variation of the potential in each. These potentials are denoted by φi, φe1, and φe2. φi is the potential of
the subdomain (Region 3 in Fig. 1) underneath the cylinder (w − b ≤ x ≤ w + b) and above the sea floor
(−h ≤ y ≤ −d). Thus, the fluid within this subdomain obeys the governing equation

∇2φi = 0, (7)

and the following boundary conditions:

φi
y = 1 for w − b ≤ x ≤ w + b, y = −d, (8)

φi
y = 0 for w − b ≤ x ≤ w + b, y = −h, (9)

φi = φe1 for x = w − b, −h ≤ y ≤ −d, (10)

φi = φe2 for x = w + b, −h ≤ y ≤ −d. (11)

Equations 8 and 9 are the body and no-flux boundary conditions, respectively. Equations 10 and 11 express
the requirement of matching the potential (or linearized fluid pressure) at the juncture boundaries shared
by the subdomains.
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The functions φe1 and φe2 are the potentials of the inner and outer fluid subdomains in Regions 1 and 2,
respectively. They satisfy the governing equation,

∇2φq = 0, q = e1, e2, (12)

and the following set of boundary conditions:

φ
q
y = 0, (13)

φ
q
y − νφq = 0, (14)

φ
q
x = 0, (15)

φ
q
x = φi

x. (16)

Equations 13–15 follow from the original problem of φ. However, (16) is needed to ensure continuity of
fluid fluxes at the juncture boundaries. This complements (10) and (11) mentioned above for these same
boundaries. In addition, symmetry about x = 0 for Region 1 gives

φe1
x = 0 for x = 0, −h ≤ y ≤ 0, (17)

while in Region 2 the radiation condition for wave elevation Y(x, t) implies

Y(x, t) = ζ2A2e(im0x−iσ t) = ζ2η(x)e−iσ t, as x → ∞. (18)

Here, A2 is the wave amplitude per unit ζ2, η(x) the free-surface profile, and m0 a wave number. The
solutions in all three regions must be properly matched.

2.2 Solution of φi

In Region 3, φi can be decomposed into a homogeneous solution φih and a particular solution φip, with the
latter constructed to satisfy inhomogeneous boundary condition, Eq. 8:

φi = φih + φip. (19)

The particular solution subject to (8) and (9) can be shown easily to be:

φip = 1
2(h − d)

[
(y + h)2 − (x − w)2

]
. (20)

The homogeneous solution is subject to

φih
y = 0, for y = −d, and y = −h. (21)

This yields the eigenvalues

γn = nπ

h − d
, n = 0, 1, . . . (22)

with φih being defined by

φih =
∞∑

n=0

(C1nX1n(x) + C2nX2n(x))Yi
n(y), (23)

where

X1n =
{

1 for n = 0,
cosh γn(x − w)/ cosh γnb for n ≥ 1,

(24)

X2n =
{

(x − w)/b for n = 0,
sinh γn(x − w)/ sinh γnb for n ≥ 1,

(25)
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and

Yi
n =

{
1 for n = 0,√

2 cos γn(y + h) for n ≥ 1.
(26)

Here, Yi
n is constructed as an orthonormal set so that the following inner product can be defined for any

combination of l and m:

〈Yi
l , Yi

m〉 ≡ 1
h − d

∫ −d

−h
Yi

l (y)Yi
m(y)dy = δlm. (27)

If the expressions for φip and φih are introduced into the matching boundary conditions at x = w − b and
x = w + b, the unknown coefficients C1n and C2n can be related to the potentials φe1 and φe2.

C1n − C2n = 〈φe1, Yi
n〉 − 〈φip, Yi

n〉 at x = w − b, (28)

C1n + C2n = 〈φe2, Yi
n〉 − 〈φip, Yi

n〉 at x = w + b. (29)

This result was facilitated by using the orthogonality condition (27).

2.3 Solutions of φe1 and φe2

Solution for these regions can written as:

φq =
∞∑

k=0

Bq
k


q
k(x)Ye

k(y), (30)

where 

q
k and Ye

k are defined by


e1
k =

{
cos m0x/ cos m0(w − b)

cosh mkx/ cosh mk(w − b)

for k = 0,
for k ≥ 1,


e2
k =

{
eim0(x−(w+b))

e−mk(x−(w+b))

for k = 0,
for k ≥ 1,

(31)

and

Ye
k =

⎧
⎨
⎩

cosh m0(y + h)/N
1
2
0 for k = 0,

cos mk(y + h)/N
1
2
k for k ≥ 1.

(32)

Here, mk are eigenvalues that result from Eqs. 13 and 14 (see [17]):

m0 tanh m0h = ν, mk tan mkh = −ν, k = 1, 2, . . . (33)

and Nk are scale factors:

Nk =
{

1
2

[
1 + sinh(2m0h)/(2m0h)

]
for k = 0,

1
2

[
1 + sin(2mkh)/(2mkh)

]
for k ≥ 1.

(34)

which are introduced so that the vertical modes Ye
k form an orthonormal set:

〈Ye
k, Ye

j 〉 ≡ 1
h

∫ 0

−h
Ye

k(y)Ye
j (y)dy = δkj. (35)

Again, the unknown coefficients Bq
k can be related to the interior coefficients C1n and C2n by using matching

boundary conditions at x = w ± b, but this time to satisfy flux continuity:
∞∑

k=0

Bq
k


q
k
′
Ye

k =
{

0 for y ≥ −d,
φi

x for −h ≤ y < −d.
(36)
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Here and henceforth, all 
q
k and 


q
k
′
are understood to be evaluated at x = w±b, for q = e1, e2, respectively.

When (35) is used on (36), the coefficients Bq
k can be promptly expressed in terms of φih and φip.

Bq
k


q
k
′ = 1

h

∫ −d

−h
φih

x Ye
kdy + Bq

k
∗
, (37)

where

Bq
k
∗ = 1

h

∫ −d

−h
φ

ip
x Ye

kdy. (38)

2.4 Matching of solutions

Equations 28, 29, and 37 represent a system of equations with four sets of complex unknowns C1n, C2n,
Be1

k , and Be2
k . To simplify this system, Be1

k and Be2
k need to be expressed in terms of C1n and C2n or vice

versa. The expansion of φe1 can be introduced into Eq. 28, which results in

C1n − C2n = 1
h − d

∫ −d

−h

[ ∞∑
k=0

Be1
k 
e1

k Ye
k

]
Yi

ndy − 〈φip, Yi
n〉. (39)

Upon evaluation, it yields

C1n − C2n = 1
h − d

∞∑
k=0

Be1
k 
e1

k Skn − 〈φip, Yi
n〉, (40)

where

Skn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sinh m0(h − d)/m0N
1
2
0 for k = 0, n = 0,

sin mk(h − d)/mkN
1
2
k for k ≥ 1, n = 0,√

2m0(−1)n sinh m0(h − d)/N
1
2
0 (m2

0 + γ 2
n ) for k = 0, n ≥ 1,√

2mk(−1)n sin mk(h − d)/N
1
2
k (m2

k − γ 2
n ) for k ≥ 1, n ≥ 1.

(41)

Similarly, φih can be introduced into Eq. 37, which gives

Be1
k =

(

e1

k
′)−1

{
1
h

∞∑
n=0

[
C1nX1n

′ + C2nX2n
′] Skn + Be1

k
∗
}

. (42)

Equation 42 can now be inserted into (40) and the result can be rearranged so that the known terms are
on the right,

C1n − C2n − 1
h(h − d)

∞∑
k=0

∞∑
j=0


e1
k


e1
k

′ SknSkj
[
C1jX1j

′ + C2jX2j
′] = 1

h − d

∞∑
k=0


e1
k


e1
k

′ SknBe1
k

∗ − 〈φip, Yi
n〉|x=w−b.

(43)

The analogous equations to (43) and (42) for φe2, similarly obtained, are respectively:

C1n + C2n − 1
h(h − d)

∞∑
k=0

∞∑
j=0


e2
k


e2
k

′ SknSkj
[
C1jX1j

′ + C2jX2j
′] = 1

h − d

∞∑
k=0


e2
k


e2
k

′ SknBe2
k

∗ − 〈φip, Yi
n〉|x=w+b,

(44)

and

Be2
k =

(

e2

k
′)−1

{
1
h

∞∑
n=0

[
C1nX1n

′ + C2nX2n
′] Skn + Be2

k
∗
}

. (45)
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In conclusion, Eqs. 43 and 44 now form a solvable set of linear equations of rank 2n. The only unknowns
in them are C1n and C2n. Once C1n and C2n have been determined, Bq

k follow from (42) and (45). It is of
interest to note that 
e1′

0 = −m0 tan m0(w − b) in (42), vanishes when the argument of tangent is an integer
multiple of π . However, Be1

0 
e1′
0 was found to remain bounded.

2.5 Determination of hydrodynamic coefficients

The non-dimensional heave hydrodynamic coefficients for a twin cylinder can be easily obtained from the
velocity potential on the body using the following definition:

µ22 + iλ22 = 2
b2

∫ w+b

w−b
φi(x, −d)φi

ydx = 2
b2

∫ w+b

w−b

[
φip + φih

]
dx. (46)

Then, straight-forward integration yields the following final expression:

µ22 + iλ22 = 2(h − d)

b
− 2

3
b

h − d
+ 4

b
C10 + 25/2

b

∞∑
n=1

cos γn(h − d) tanh γnb
γnb

C1n. (47)

Here, the dimensional added-mass and damping coefficients have been non-dimensionalized by ρb2 and
ρσb2, respectively.

3 Behavior of hydrodynamic coefficients

Verification of the current solution was performed by comparing the heave hydrodynamic coefficients with
results of Yeung [18] using an infinite-fluid source integral-equation method, as well as the earlier work of
Fotsch [19] on a single cylinder. The twin-cylinder configuration reproduces single-cylinder results when
the gap-to-draft ratio was taken to be small (2.0 × 10−5).

In the computations reported here, the truncation of the series in (43) and (44) was taken at 50 terms,
adequate to at least one place in the third digit for added mass and damping. However, in free-surface-
elevation computations, 100 terms were often needed to achieve a good definition of the wave profile,
especially near the body and free-surface intersection. This is to be expected, since we expect more terms
in the series expansion will be needed in local quantities.

3.1 Behavior near Helmholtz frequency (νb)0

Figure 2 shows the heave hydrodynamic coefficients of the twin cylinders as functions of νb in relatively
deep water (h/d = 20). Results from the present solution are plotted together with those from the inte-
gral-equation solution method ([18], h = ∞). The good agreement of the two solutions is evident, except
in the low-frequency area. The difference there is explained by the fact that µ22 approaches a constant in
finite water depth [20–22], whereas its deep-water counterpart behaves like log(νb) (see [23]).

Of particular interest in this figure are critical frequencies where the damping vanishes. At these points,
there will be persistent fluid motion with no dissipation. In the neighborhood of each point, at a slightly
lower frequency, drastic changes in the hydrodynamic behavior always occur. It is helpful to assign a mode
index using this zero-damping point, since frequencies at which maximum moonpool elevation occurs
would depend on where the elevation is taken.

For this geometry, the Helmholtz mode can be identified at (νb)0 = 0.2617, at which no radiating waves
are generated by the heave oscillation since λ22 = 0; µ22 varies from negative values to positive values
in this neighborhood. Two other critical frequencies, (νb)1 = 0.829 and (νb)2 = 1.577, are also seen. In
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Fig. 2 Heave hydrodynamic coefficients for twin cylinders,
b/d = 1.0, w/b = 5.0, h/d = 20
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Fig. 3 Heave hydrodynamic coefficients at the Helmholtz
resonance, shown with determinant of (43) and (44) and
wave elevation averaged over moonpool |η̄|, b/d = 1.0,
w/b = 5.0

contrast, these higher-order modes are characterized by a spiky damping and added-mass behavior around
the frequencies where damping vanishes. As will be illustrated later, the higher-order resonances corre-
spond to oscillatory wave forms in the moonpool region. The modest behavior of µ22 at (νb)0 makes it
distinctively different from the other symmetric resonances.

Figures 3 and 4 compare the behavior of the complex determinant, associated with the unknown coeffi-
cients C1n and C2n in (43) and (44). The real and imaginary components of the determinants were multiplied
by 10−89 and 10+12, respectively, before being plotted in Figs. 3 and 4.

Also plotted in these figures is the modulus of the complex moonpool wave elevation, |η̄|, spatially aver-
aged over the moonpool. For the Helmholtz mode shown in Fig. 3, the location where the real component
of the determinant crosses the axis (νb = 0.218) coincides with neither the maximum moonpool elevation
(νb = 0.193) nor the zero damping location, (νb)0. In contrast, for the first resonance seen in Fig. 4, the
real component of the determinant crosses the axis very close to, but not exactly at, the peak moonpool
elevation at νb = 0.815. Similar behavior was observed for resonances of higher order.

The frequency range in Fig. 4 has been greatly expanded to elucidate the behavior of the hydrodynamic
coefficients around the resonance. Note that the vertical ordinates have been compressed. It is now evi-
dent that the seemingly large spike in the coefficients of Fig. 2 actually behaves in a smooth and bounded
manner. The boundedness of the coefficients is related to the fact that the imaginary component of the
determinant remains non-zero when the real component crosses the axis, resulting in a non-singular matrix.

The spike in the damping generally correlates well with the location of the abscissa crossover of the
added-mass coefficient (rather than at the zero crossing of the real component of the determinant). This
is especially evident for the w/b = 1.5 case, in Fig. 5, where the zero values for the added-mass coefficient
and the real part of the determinant occurs at νb = 0.510 and 0.522, respectively. Here, the Helmholtz
marker for zero-damping occurs at (νb)0 = 0.608. The inter-relationship between the spike in damping,
the change in sign of the added mass and the zero-damping location, or vice versa, should be deducible
from the Kramers–Kronig relations.

As was stated previously, the critical frequencies are defined in this paper where the damping coefficients
are zero. Figure 6 shows the damping coefficients for the previous two cases plotted in a log–log scale. An
additional case with w/b = 2.5 is also shown. The damping coefficients are observed to approach zero
values with rapidly increasing slopes. Computationally, minimum damping values on the order of 10−20

were obtained, indicating that they are effectively zero-damping points. We note that these are points with
finite added mass, thus similar to the waveless shapes mentioned in the Introduction.
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3.2 Variation of hydrodynamic coefficients with moonpool width

It is of interest to examine the overall variation of the heave hydrodynamic coefficients with the moonpool
width. For this purpose, w/b of the previous geometry is varied from 1.0 to 20. Figure 7 shows a contour
plot of the (non-dimensional) added-mass coefficient µ22 with w/b and νb as variables. Figure 8 is the
corresponding contour plot of the damping coefficient. For clarity, the damping coefficient is plotted in
logarithmic scale, log10λ22.

The loci of frequencies of each resonant mode show up clearly as dark lines on these plots. A dark
shade indicates spiky values in the µ22 plot, but vanishing damping for the λ22 plot. As explained in the
last section, the plots do not coalesce. The exception is the Helmholtz mode, which has a much larger
bandwidth and is spread over a larger area at the bottom of each plot. The bandwidth of the higher-order
resonance decreases as the order increases and becomes less noticeable. A significant difference between
the Helmholtz mode and the other resonant modes is that, as the separation decreases to zero, this mode
approaches a limiting frequency while the higher-order resonant frequencies tend toward infinity. This
behavior is better understood by another plot.
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Fig. 7 Contours of µ22
with w/b and νb as
variables, b/d = 1,
h/d = 20

Fig. 8 Contours of λ22
with w/b and νb as
variables, b/d = 1,
h/d = 20

Figure 9 is a waterfall plot of the added-mass coefficients for increasing separations. The dashed line
represents the single-body result (w/b = 1.0), which has no pumping mode present. Each w/b-value is
plotted with a vertical translation (�) of +3.45 units. The range of w/b shown is [1.0, 2.0], with an increment
of 0.0345. The largest spike in the added-mass coefficient is marked by the solid line at w/b = 1.01724.
The spike to the right of the largest one corresponds to w/b = 1.01379, which gradually diminishes to the
single-body behavior. Faltinsen [24] gave an approximating formula for the Helmholtz frequency using a
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Fig. 9 Plot of µ22 versus
νb for small moonpools,
with w/b =
[1.0(0.0345)2.0],
d/b = 1.0, h/d = 20.0
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one dimensional U-tube analysis of the gap. In the present notation, his result suggests the resonance is at

νb = b/d. (48)

The abscissa crossovers of µ22 in Fig. 9 correspond closely to the points of maximum motion. The present
results suggest that (48) is only correct for very small gap (w/b ≈ 1.0), and even so, the crossover point is
less than b/d.

As w/b increases, µ22 eventually loses its spiky behavior with its positive spike decreasing in size, leaving
a local minimum in the coefficient. Simultaneously, its Helmholtz-mode frequency also decreases gradually.
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Fig. 11 Free-surface
elevation, Re η(x) in
moonpool, from
νb = 0.15 to 0.25,
w/b = 5.0
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Figure 10 is a plot of the heave added-mass coefficients against w/b and ν(w − b)/π . It is clear that the
higher-resonance modes occur close to frequencies that satisfy the following relation of standing waves:

ν(w − b) = nπ , n = 1, 2, 3 . . . (49)

The first few (non-Helmholtz) resonant modes tend to occur at slightly lower values than ν(w − b)/π for
the smaller gap widths. This is related to the fact that the oscillating waves sense the finiteness of the draft
of the cylinders walls. The cylinder walls act as deep vertical walls at higher resonance frequencies when
the standing waves are shorter. Thus the agreement with Eq. 49 would then be better.

4 Resonance free-surface shapes

With the definition of the potential given by (1), the spatial form of the free-surface elevation per unit
motion ζ2 is given by η(x) = νφ(x, 0), the real and imaginary parts of which are in phase and 90◦ out of
phase, respectively, with the body displacement.

The geometry studied here is that of the twin cylinder in Fig. 2, with b/d = 1 and h/d = 20. It is helpful
to keep in mind that the first three critical frequencies are numerically at (νb)0 = 0.2617, (νb)1 = 0.829,
and (νb)2 = 1.577.

4.1 Transiting across the Helmholtz mode

Figures 11 and 12 show Re η(x) and Im η(x), respectively, across the moonpool, x = [0, w−b], for νb = 0.15
to 0.25. The profiles in these figures appear to be predominantly “piston-like”, but with an appreciable
sinusoidal component. The profiles for the maximum wave elevation at νb = 0.193 are also shown in these
figures. It is interesting to note that, at this frequency, the spatial average of the imaginary component
is larger than the real contribution. Additionally, the behavior of the profile closer to the zero-damping
location can be observed in Fig. 13, as the frequency parameter traverses across (νb)0 = 0.2617 from
νb = 0.260 to 0.264. Here, Im η(x) decreases uniformly to zero across the entire gap and then changes to
an opposite (negative) phase. The vanishing of the Im η(x) is consistent with the vanishing of the damping
since a non-vanishing Im φ would have produced positive work on the fluid. Thus, at (νb)0, φ is real and
bounded, which is an interesting property.

4.2 Modal shapes at higher-order resonances

As can be seen from Fig. 14, when the frequency approaches the first higher-order critical frequency, at
(νb)1 = 0.829, there is a marked increase in the amplitude of Re η(x). This is in agreement with the µ22 data
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Fig. 12 Free-surface elevation, Imη(x) in moonpool, from
νb = 0.15 to 0.25, w/b = 5.0
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Fig. 13 Free-surface elevation, Im η(x) in moonpool,
across (νb)0 = 0.2617
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Fig. 14 Change in η(x) across the first resonance fre-
quency, (νb)1
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Fig. 15 Evolution of moonpool free-surface profile, η(x),
from νb = 1.0 to 1.4

as its value spikes up when it approaches the critical frequency. Close to (νb)1, µ22 changes sign and the
phase of the real wave profile rapidly flips, but the shape retains its half sinusoidal form in the half gap as
shown in the figure. The two real components shown in this figure were taken at the positive and negative
peaks of µ22. A full standing wave is formed in the full moonpool space but added onto the constant
Re (Be1

0 ). At high frequencies, the imaginary component is usually comparably insignificant. However,
with a spike in damping around the resonances, it is possible for the imaginary component of the wave
profile to become dominant. An example of this is shown in Fig. 14 where the profile for this component
is shown at the peak of λ22 with νb = 0.815. This also happens to be the case where the real component
vanishes. Interestingly, while the real component undergoes a change in phase at this frequency, the imag-
inary component does not. Instead, the imaginary component changes phase at (νb)1 = 0.829 (λ22 = 0),
similar to the behavior in Fig. 13.

In contrast to the behavior preceding the first resonant frequency, as the frequency increases further
beyond (νb)1, the wave shape changes differently (Fig. 15). The minimum elevation at the body side moves
inwards towards the center of the moonpool, while elevation at the cylinder wall increases. This behavior
continues until the next resonance frequency near (νb)2 is approached, near which the shape approaches
that of a full sinusoid in the half-moonpool space (Fig. 16). Again, there is a marked increase in the
magnitude of Re η as this frequency is approached.
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Fig. 16 Free-surface elevation, Re η(x), as frequency
crosses the second resonance near (νb)2
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Fig. 17 Evolution of moonpool wave elevation Re η(x)

from νb = 1.8 to 2.3

One can establish that this pattern of change repeats in a similar way as (νb)3 = 2.357 is approached. It
suffices to illustrate this by showing only Re η in Fig. 17, where the formation of three standing waves in
the full moonpool width is imminent.

5 Conclusions

The problem of a heaving twin cylinder with a free-surface gap or moonpool was analyzed using an accurate,
semi-analytical method, which is not plagued by irregular frequencies encountered in other formulations.
Attention was directed to the occurrence of a sequence of critical frequencies at which the radiation damp-
ing vanishes. At frequencies slightly below each of these zero-damping points, (νb)i, i = 0, 1, 2 . . ., spiky
behavior of the damping and added mass can occur. The magnitude of these intense variations, though
never singular in reality for small i, depends on the body shape and other geometric ratios. Near (νb)0
is the occurrence of the Helmholtz mode, where maximum moonpool motion can occur with a relatively
flat, but not constant, wave profile. As the moonpool gap decreases, this resonant motion is more extreme
or narrow-banded. The intensity of the moonpool motion is closely related to a spiky damping coefficient
and a concurrent sign change in the heave added mass. As expected, a smaller moonpool width leads to a
more piston-type behavior of the wave elevation.

In contrast to the Helmholtz oscillations, the higher-order resonances near the critical frequencies
(νb)i, i = 1, 2, . . . , have been shown to be standing waves of integer wavelengths plus an additive constant
in the moonpool region. The resonant motion takes place at frequencies close to a standing-wave formula
based on moonpool width: ν(w − b) = nπ , n = 1, . . ., which works well for short waves (n � 1), but
becomes inaccurate as d/b decreases (shallower-draft cylinders).

Across a frequency of resonant motion, the following behavior of moonpool wave profile has been
observed: The in-phase (or real) component relative to the cylinder displacement changes in sign, while
the 90◦ out-of-phase (imaginary) component, usually the dominant component, remains at the same sign.
The imaginary component does change in sign as the frequency traverses across (νb)n. At these radiation-
free points, the twin cylinder has finite added mass.

The present analysis is pertinent to time-domain simulations of motion of multiple-body systems in waves.
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